[1]呙娓佽. 典型含能物质能量与安全性综合效应评定及应用[D]. 长沙: 中南大学, 2012.GUO W C. Evaluation and application of energy and safety comprehensive effects of typical energetic materials [D]. Changsha: Central South University, 2012.
[2]陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究[J]. 火炸药学报, 2012, 35(4): 69-72.
CHEN X M, ZHAO Y, SONG C W, et al. Experimental study on deflagration to detonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35 (4): 69-72.
[3]王曙光, 朱建生, 陈栋, 等. 炸药爆炸理论基础[M]. 北京: 北京理工大学出版社, 2020.
WANG S G, ZHU J S, CHEN D, et al. The theoretical basis of explosive detonation [M]. Beijing: Beijing Institute of Technology Press, 2020.
[4]KOSTYUKOV E N, NIKIFOROVA M S, SPIRIN I A, et al. Dependence of acoustic emission parameters and shock-wave sensitivity of plastic-bonded HMX on filler particle size[J]. Combustion, Explosion, and Shock Waves, 2023, 59: 362-366.
[5]花成, 黄明, 黄辉, 等. RDX/HMX炸药晶体内部缺陷表征与冲击波感度研究[J]. 含能材料, 2010, 18(2): 152-157.
HUA C, HUANG M, HUNAG H, et al. Intragranular defects and shock sensitivity of RDX/HMX [J]. Chinese Journal of Energetic Materials, 2010, 18(2): 152-157.
[6]NEELAM S, NARANG R, NARANG P K, et al. New approach to hazard classification testing of propellants [C]//33th International Pyrotechnics Seminars. Fort Collins, CO, US, 2006.
[7]YANG K, CHEN L, LIU D Y, et al. Quantitative prediction and ranking of the shock sensitivity of explosives via reactive molecular dynamics simulations [J]. Defence Technology, 2022, 18(5): 843-854.
[8]柳梦辉. 固含量对改性双基推进剂冲击波起爆特性影响研究[D]. 太原: 中北大学, 2023.
LIU M H. Effect of solid content on shock wave initiation of modified double propellant [D].Taiyuan: North University of China, 2023.
[9]吕春玲, 狄建华, 刘玉存. 冲击波起爆热点点火阶段的影响因素[J]. 火工品, 2000(4): 10-15.
Lǔ C L, DI J H, LIU Y C. Influence factors of hot spot ignition period in shock wave initiation [J]. Initiators & Pyrotechnics, 2000(4): 10-15.
[10]陈晓明, 金鹏刚, 张衡, 等. 发射药冲击波感度的试验研究[J]. 含能材料, 2011, 19(6): 689-692.
CHEN X M, JIN P G, ZHANG H, et al. Experimental study on the shock wave sensitivity response of gun propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 689-692.
[11]罗一鸣, 沈飞, 王辉, 等. 不同点火条件下DNTF与B炸药的燃烧转爆轰实验研究[J]. 火炸药学报, 2022, 45(3): 332-338.
LUO Y M,SHEN F, WANG H, et al. Experimental study on DDT of DNTF and Composition B explosives under different ignition conditions [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 332-338.
[12]马珊珊, 张跃跃, 张会锁, 等. 装药形状对冲击波超压峰值的影响[C]//中国兵工学会, 重庆市科学技术协会. OSEC首届兵器工程大会论文集.重庆, 2017.
[13]朱俊伍. 小尺寸装药燃烧转爆轰特性及其影响规律研究[D]. 太原: 中北大学, 2022.
ZHU J W.Study on the deflagration to detonation transition characteristics and its influence law of small size charge [D]. Taiyuan: North University of China, 2022.
[14]张超, 马亮, 赵凤起, 等. 含能材料燃烧转爆轰研究进展[J]. 含能材料, 2015, 23(10): 1028-1036.
ZHANG C, MA L, ZHAO F Q, et al. Review on deflagration-to-detonation transition of energetic materials [J]. Chinese Journal of Energetic Materials, 2015, 23 (10): 1028-1036.
[15]文尚刚, 王胜强, 黄文斌, 等. 密度对压装B炸药燃烧转爆轰性能的影响[J]. 火炸药学报, 2006, 29(5): 5-8.
WEN S G, WANG S Q, HUANG W B, et al. The influence of density in Composition B on deflagration-detonation-transtion behavior [J]. Chinese Journal of Explosives & Propellants, 2006, 29(5): 5-8.
[16]冯晓军, 王晓峰. 装药孔隙率对炸药烤燃响应的影响[J]. 爆炸与冲击, 2009, 29(1): 109-112.
FENG X J, WANG X F. Influences of charge porosity on cook-off response of explosive [J]. Explosion and Shock Waves, 2009, 29(1): 109-112.